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Abstract—This paper presents a deep learning architecture
for restoring ancient paintings, which have immense historical
and artistic value as they vividly record history from diverse
perspectives. Due to the passage of time, many historical works
have suffered damage, which requires time-consuming manual
restoration by skilled professionals. Our proposed method utilizes
a sophisticated edge detection model to extract structure infor-
mation from the paintings, including texture, painting style, and
structure, which are applied for restoration. The effectiveness
of the proposed method was validated by training and testing
on various ancient painting datasets. This work has significant
value in that it can expedite and enhance the accuracy of the
restoration process without compromising the original artistic
style and intent, thereby better preserving and transmitting
our historical culture. We believe that the contribution of this
work is meaningful for VR cultural heritage conservation and
presentation.

Index Terms—image inpainting, ancient paintings, generative
adversarial network, transformer

I. INTRODUCTION

In latest years, virtual reality (VR) technology has become
more and more prevalent [1] and has been applied to all
aspects of life, such as education [2], [3], medical reha-
bilitation [4], roaming [5], etc. Among them, VR cultural
heritage conservation, i.e., digitizing cultural heritage into the
virtual world to show people is a hot research topic in recent
years. Based on deep learning, ancient painting restoration can
recover missing or blurred murals, surface textures of cultural
relics, etc., which is significant for VR digital cultural heritage
conservation and display.

Ancient paintings are an essential part of human cultural
heritage. They record the history, culture, and art of ancient
times and are closely related to the society, culture, and
politics of their era. They not only reflect the humanistic
environment and social life of their time but also serve as a
record of the aesthetic concept and artistic style of their era. By
restoring ancient paintings, we can gain a better understanding
of the techniques, styles, and characteristics of ancient art.
This understanding can help us restore historical truth more
accurately and aid in comprehending the development of
ancient culture and art.
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However, these works of art may suffer damage in various
ways during long periods of preservation. For instance, wood
or paper may be eroded by moths, leading to damage to
the painting surface, impurities such as grease or liquid may
adhere to the painting surface, leading to stains and extensive
masking damage. Furthermore, the painting surface may show
wear, scratches, or scuff marks. Restoring ancient paintings
requires filling in the missing areas in damaged paintings
with reasonable content while preserving the original style and
characteristics without altering the artistic style and intent.

Traditional algorithms for restoring ancient paintings [6]–[9]
reconstruct by heuristically searching for similar pixel blocks.
While this approach can solve the local restoration problem
for small areas, it is insufficient for large-area restoration.
This is because large-area restoration requires extracting more
texture information and the global structure. In addition,
traditional methods have poor reconstruction effects on details,
especially on images with complex edge information. With the
development of artificial intelligence technology, deep learning
methods are increasingly being applied in image restoration.

Although convolutional neural networks (CNNs) [10] and
generative adversarial networks (GANs) [11] have proven
effective for restoration tasks such as large image defects, there
are still some limitations in their direct use to deal with ancient
painting restoration.

• The current methods for restoring images do not account
for the styles unique to ancient paintings. The diverse
artistic styles of paintings from different eras add to the
difficulty of restoration work.

• CNN-based methods currently available have limited
local perceptual fields and inductive bias. This makes
it challenging for these methods to learn semantically
consistent textures and gain an overall understanding of
the image, resulting in unnatural imperfections and loss
of details in the image restoration process.

• As the masked area in ancient paintings does not have any
location information, current methods have a tendency
to repeat meaningless restoration in large, irregularly
masked areas.

• The existing GAN-based methods are slow to train and
difficult to control the quality of the generated images,
which cannot be adapted to the precise task of ancient



painting restoration.
To address the limitations of existing methods, we propose

a novel model based on the improved incremental transformer
structure [12]. This model repairs the image structure through
vision transformer, thereby restoring the image. To improve
the model for restoration of paintings with complex structure
information, the context-aware tracking strategy (CATS) [13],
a pixel-level edge detection model, was combined with a three-
stage image restoration model to effectively tackle the task of
restoring ancient paintings.

II. RELATED WORK

A. Edge Detection

As a fundamental computer vision task of locating the
boundaries of perceptually salient objects in natural images,
edge detection has a long history [14] and plays an essential
role in solving various problems such as image restoration
[15], [16], image segmentation [17], virtual reality occlusion
[18], [19], etc. In the early stages, many models [20]–[23]
used low-level features of images for edge detection. These
methods have excellent performance and require less comput-
ing power. Many algorithms can generally obtain clear edge
maps, such as the Canny algorithm [20] which has been used
until now. However, it is necessary to solve the problem of
high-frequency texture suppression, so deep learning methods
[24]–[28] are introduced. These edge detection methods learn
multi-level edge weighting to obtain the final edge map. Deep
learning methods significantly improve the performance of
edge detection, as hierarchical deep features generated by large
receptive fields can robustly suppress false positives in textured
regions [25]–[27]. However, in the case of localization ambi-
guity, these methods need to be improved with morphological
non-maximum suppression [24], [26], [27], [29], [30]. The
CATS model focuses on the clarity of the edge map. To obtain
a sharper edge map, the CATS model separates the blend of
features obtained by convolution.

B. Auxiliary Information for Image Inpainting

Auxiliary information is relatively important for image
restoration, such as edge information of image structure [12],
[15]. Reference [15] proposed an edge generator that predicts
the edge information of missing regions of an image to
approximate the structure information, and demonstrated that
the structure information of an image can be used as a
priori information to effectively improve the restoration effect.
To facilitate structure refinement, [31] proposed a multiscale
restoration (MST) network with a novel encoder-decoder
structure to recover the input image from sketch tensor space.
ZeroRA based Incremental Transformer Structure (ZITS) [12]
works similarly, but uses the transformer to obtain global
information about the image to repair the lines and edges.
Our work is inspired by this work. Moreover, the design of
this model is more flexible in that it does not need to be
retrained to handle new tasks only new structure information
needs to be added to the pre-trained model, which is one of

the factors that we believe that the model has good practical
application.

C. Vision Transformer in Image Inpainting

Thanks to the ability to obtain global information, the
transformer has achieved excellent results for many tasks in
the fields of natural language processing (NLP) [32], [33] and
computer vision (CV) [34], [35]. The use of transformer was
first proposed in [34] to handle vision tasks, such as image
recognition, and proved that the performance of convolution
models can be equal to or even exceed convolution under
large-scale training. Reference [35] verified the scalability
and generalization of the visual transformer with the design
of Masked Autoencoder (MAE). Due to the complexity of
squaring, many works have been devoted to reducing its
time and space complexity, for example, the axial attention
mechanism [36] used in our model is one of them. We use
transformer to repair the image structure and guide subsequent
modules for image restoration with better results compared
to CNN. Since our tasks are similar to [35], the model also
inherits the advantages of the MAE unsupervised model,
which is convenient for processing downstream tasks. Most
of the ancient painting datasets [37], [38] are typically orders
of magnitude small, un-preprocessed, and unlabeled.

The use of deep learning methods to process sequential
information such as ancient texts is relatively common [39],
[40], but few related works have explored ancient painting
restoration. Qiaole Dong et al. [12] used an augmented,
attention mechanism-based architecture for image restoration
tasks, using an attention mechanism (transformer architecture)
to obtain global information about the image. In addition,
the transformer architecture can easily introduce positional
information encoding to provide positional information of
the occluded regions, thus improving the effectiveness of the
model in restoring images. However, their model chooses the
Canny algorithm to extract image edges for image structure
restoration in order to compress the computational effort,
which is an unmistakable design. Nevertheless, we propose to
use CATS model [13] for more accurate structure information
in order to strive for excellence on ancient paintings. Such an
improvement would be helpful for the specific task of ancient
painting restoration. Our model shows promising potential, and
we believe it will pave the way for future research in this area.

III. METHOD

To accomplish the task of restoration caused by large defects
in ancient paintings, etc., we propose to fuse the edge detection
model and the three-stage image restoration model, as shown
in Fig. 1.

The CATS model mitigates edge localization ambiguity
with two main designs: tracking loss and a context-aware
fusion (Co-Fusion) block. In addition to the weighted cross-
entropy loss, tracking loss further introduces a set of boundary
tracking functions to distinguish confusing pixels from edges,
and a texture suppression function to handle texture regions
to smooth them across the board. Under the supervision of



Fig. 1. The overview of our model. Our model emphasizes the use of the
CATS architecture (as shown in the top left of the figure) in the preprocessing
phase to obtain fine-grained structure information, which consists of three
VGG-based [41] edge detectors (HED [26], RCF [27], BDCN [28]) and
CoFusion blocks. the first phase of the three-stage reconstruction model uses
a transformer-based model to repair the image structure, the second stage
encodes the structure with Resnet, and the third stage uses fast Fourier con-
volution to aid in image restoration using structure information. In particular,
the Resnet blocks are from the intermediate layer of [15], and the final stage
of the reconstruction model uses Rezore [42] to inject the encoded structure
into the third stage to aid in the reconstruction.

the tracking loss, the Co-Fusion block learns to selectively
divide edges and non-edges at the pixel level, and this block
replaces the weighted edge fusion part of the fusion process
by considering the image features in each dimension.

Reference [12] proposed an image restoration method based
on incremental transformer structure. The method embeds
position encoding and masking information into the trans-
former encoder and decoder to achieve more accurate image
restoration. The restoration model consists of three stages:
transformer-based structure reconstruction, structure feature
encoder, and Fourier convolutional texture restoration. The
model takes as input the original image, masked regions, and
edge information of the image, and down-samples it in the first
stage to repair low-resolution structures, which are learned by
the axial attention mechanism and encoded by the standard
attention module, and the recovered structure information can
be simply up-sampled to arbitrary resolutions. The second
stage encodes the up-sampled sketch space features. Finally,
this structure information is added to the module of the last
stage in the form of weighted residual connections (Rezore)
[42] to repair the texture. It has been shown that adding a
learnable parameter before the residuals when only residual
concatenation is needed can effectively accelerate the depth
model convergence, i.e.

xi+1 = xi + αiFi(xi) (1)

where xi and Fi(xi) denote the input and output of layer i,
respectively, and αi is the learnable parameter.

In addition, we use masked position encoding (MPE) to rep-
resent the distance and direction from the unmasked region to
the masked region. We wish to highlight several contributions
to this work.

• We combine two high-performance models. This neces-
sarily entails an arithmetic cost but is more conducive to

extract the stylistic features of ancient paintings in the
unmasked region. The arithmetic power of this model is
acceptable from subsequent experimental results.

• To explore the practical application effect of the incre-
mental model. To the best of our knowledge, no research
explores and employs the most cutting-edge models in
computer vision for practical applications in a certain
domain. We believe that this work is enlightening for
other researchers’ work.

• Tested on SNGFaces [37] and the ancient Chinese paint-
ing dataset [38]. And, based on the practical tests we
draw some valid conclusions.

A. Edge Detection

For this module, we use the context-aware tracing strategy
(CATS) model, which obtains clear edge features by tracking
loss and context-aware fusion (Co-Fusion) blocks. Obviously,
only the unmasked part goes through the edge detection
module.

a) The tracing loss: The tracking loss can be expressed
as

TracingLoss(YP , YL) = LWCE +λBTLBT +λTSLTS (2)

where YP and YL denote the edge prediction result and the true
edge, respectively, LWCE is the weighted cross entropy, LBT

is the boundary tracing function, LTS is the texture suppres-
sion function, λBT and λTS are hyperparameters for balancing
the individual elements in the tracking loss. During model
training, LWCE performs coarse edge learning, LBT handles
the refinement of edge localization by feature unmixing, and
LTS provides a strong overall suppression of texture regions.
With LBT and LTS , the tracking loss handles the non-edge
points collected according to the surrounding environment
with target-specific suppression, achieving clear edge gener-
ation with less localization ambiguity than a single weighted
cross-entropy. The expressions and necessary descriptions of
the weighted cross-entropy, the boundary tracking function for
feature solution blending, and the texture suppression function
are given below, respectively.

Weighted cross-entropy can effectively supervise the net-
work to learn edge maps, but it is difficult to balance the
attention of edge and non-edge data even after adding the
hyperparameter λ, which makes it difficult for the model to
distinguish pixel regions with similar features to edges or high-
frequency regions with continuous smooth changes of pixels.
Therefore using the boundary tracking function LBT as

LBT = −
∑

P∈EL

log(

∑
i∈LP

yPi∑
i∈Rε

P \LP
yPi

+
∑

i∈LP
yPi

) (3)

where SE is the set of true edge points, Rε
P denotes a patch

containing edge fragments whose center is an edge pixel,
and the set of edge pixels in Rε

P is denoted as LP . This
loss function will train the model to force the predicted edge
pixels in all patches to converge to the true edge pixels, while
suppressing the blurred results caused by confusing pixels with
similar features. For our work, it definitely provides a better



representation of the structure information of the unobscured
part of the image. And texture suppression function LTS can
be write as

LTS = −
∑

P∈YL\EP

log(1−
∑
i∈Rt

P

yPi

|Rt
P |

) (4)

where EP denotes the edges and their confused pixels used
in LBT , and Rt

P denotes the patches centered on non-edge
pixels. texture suppression allows to obtain a clearer edge
structure avoiding unnecessary information interfering with the
subsequent structure recovery. In fact, the functions of LTS

and LBT are complementary.
b) Context-aware fusion block: Combining edge infor-

mation from different dimensions is the key to obtain accurate
edge results, and previous works [26], [27], [29] commonly
use weighted averaging to deal with edge details of lower
dimensions and global information of higher dimensions. We
use a context-aware fusion (Co-Fusion) module, which is
designed based on a self-attentive mechanism that absorbs
information from edges of different dimensions and avoids
its limitations. In this module, a simple convolution is used to
extract scores from multidimensional heatmaps as weights, and
the weight map determines the contribution of each heatmap
to the result. The Hadamard product of the heat map and the
weight map is the final output after the activation function, as
shown in the bottom left of Fig. 1.

B. Image Restoration

Reference [12] uses the Transformer restoration structure
and incrementally adds the structure to the subsequent CNN
texture restoration network. As mentioned above, for this mod-
ule we develop the incremental model for image restoration.

a) Transformer-based Structure Restoration: This mod-
ule repairs the masked image structure at a lower resolution,
which can reduce the arithmetic overhead while making full
use of the learning capability of the global information of the
transformer. In addition to dimensionality reduction, the model
uses a combination of axial attention and standard attention to
control the overhead of substantial time complexity, as shown
in Fig. 2 where relative position encoding (RPE) [43] is used
to provide spatial information.

After the encoding is complete the convolution is up-
sampled to the same size as the original input. We use binary
cross-entropy (BCE) loss to optimize the structure repair
module by predicting the complete edge EP and the true
complete edge EL computing the loss denoted as

L = BCE(EP , EL) (5)

To obtain clear high-resolution edge maps, up-sampling
using a learning approach also effectively avoids the vignetting
problem generated by interpolation.

b) Fourier CNN Texture Restoration: Reference [44] pro-
posed a resolution-stabilized painting restoration using Fourier
convolution. We use convolution to down-sample to a certain
size to repair and then up-sample to the original size. The
module is a self-encoder with a Fourier convolution layer at its

core, which consists of two branches: local conventional con-
volution and global fast Fourier transform post-convolution.
This model has a global perceptual field and local invariance
but still requires predicted architectural features to complement
the restoration task.

c) Structure Feature Encoder: For the predicted com-
plete structure information, and similarly as before down-
sampling to small sizes is encoded into the feature space using
full convolution (FCN). In contrast to the above process of
down-sampling and up-sampling, here we use gated convolu-
tion [45] to extract relatively sparse structure features.

d) Loss function: We calculate the loss of the unmasked
part using a simple minimum absolute value deviation (L1
loss), i.e.

LL1 = M ⊗ |IL − IP |1 (6)

where M identifies the pixel as belonging to the masked
or unmasked region, identified by 0 and 1, respectively, ⊗
denotes the Hadamard product, and IL and IP denote the
true and predicted images, respectively. The adversarial loss
includes two parts: generator loss LG and discriminator loss
LD. In the above model, the last two stages are regarded as
the generator G, and we design the discriminator D based on
the discriminator in [46]. the generator loss is denoted as

LG = −EIP [logD(IP )]. (7)

The discriminator loss is expressed as

LD =− EIL [logD(IL)]

− EIP,M
[logD(IP )⊗M ]

− EIP,M
[(1− logD(IP ))⊗ (1−M)].

(8)

We also used the gradient penalty in [47], as

LGP = EIL∥∇ILD(IL)∥2. (9)

Fig. 2. The transformer block in transformer-based structure reconstruction.



TABLE I
HYPERPARAMETER SETTING

λL1
λADV λFM λHRF

10 10 100 30

Therefore, the antagonistic loss is expressed as

LADV = LD + LG + λGPLGP (10)

where λGP takes 10−3 and we use the feature matching loss
LFM mentioned in [48]. The formula is written as

LFM = EIL∥D(IL)−D(IP )∥1. (11)

In addition to this, we also used high receptive field per-
ception loss (HRF loss) [44] which is written as

LHRF = E([ϕHRF (IL)− ϕHRF (IP )]
2) (12)

where ϕHRF is a pre-trained network that evaluates the
distance between the features extracted from the predicted
image and the target image, which we implement using dilated
convolution. The final loss function of the above model is

Loss = λL1
LL1

+ λADV LADV + λFMLFM + λHRFLHRF

(13)
where the hyperparameters are set as Table I.

IV. EXPERIMENT

A. Dataset
For the CATS model, there is no dedicated ancient paint-

ing dataset. We use pre-trained model parameters, and this
model is only used to assist the restoration model to improve
performance in our work, so we will not repeat it here.
For the restoration model, it is not enough to just use the
existing ancient painting dataset, so we perform incremental
supplementary training based on the pre-trained model.

The CATS model was pre-trained using BSDS500 [49],
consisting of 200 training images, 100 validation images and
200 test images. Each image in this dataset is annotated by
several annotators.

The restoration model was pre-trained using the Places2
[50] dataset and the indoor dataset. Approximately 1800k
images from Places2 and 20055 indoor images were used
as training sets and tested on 256×256 and 512×512 sizes,
respectively. For our task, we also trained and tested the
model on the following datasets separately. And thanks to the
excellent feature that all parts of ZITS are self-models, we do
not need a dedicated image restoration dataset.

SNGFaces [37], a face image dataset, the images are de-
rived from high-resolution scanned images of oil paintings.
The dataset contains 621 high-quality PNG images with a
resolution of 2048×2048, and 644 high-quality PNG images
with a resolution of 1024×1024.

Another dataset is the ancient Chinese painting dataset
organized by [38], which contains 2936 ancient bird painting
images, 2720 flower ancient painting images and 2610 land-
scape ancient painting images, a total of 8266 ancient painting
images.

TABLE II
FID LOSS OF THE ORIGINAL MODEL AND OUR MODEL

With Canny With CATS
Chinese ancient paintings(Bird) 29.67 28.99

Chinese ancient paintings(Flower) 54.95 51.62
Chinese ancient paintings(Landscape) 52.11 50.44

SNGFaces(1024× 1024) 101.45 102.65
Average FID 52.56 51.09

TABLE III
FID LOSS OF MST MODEL AND OUR MODEL ON SNGFACES

MST Ours
FID 113.45 102.65

B. Implementation Details

a) Training Design: As a complement to the pre-trained
model, it is sufficient to emulate the training settings in
[12] to suit our downstream tasks. Specifically, the entire
model is implemented in PyTorch, where the module in the
first stage uses the Adam optimizer to train 80 epochs and
100 epochs on the SNGFaces and ancient Chinese painting
datasets, respectively. The modules from the final two stages
use the Adam optimizer to train 60 epochs and 80 epochs on
the two datasets. Our number of iterations is much smaller than
the pre-training, due to the smaller training volume required
by the pre-trained model to handle the downstream task fine-
tuning, our computing power limitation, and the increased
computing power demand after the addition of the CATS
model.

b) Covering Design: We also use the same masking
setup in [12], which includes 1000 irregular masks with
masking rates from 10% to 50%. This design also facilitates
our comparison with the original ZITS model in terms of
training and testing.

c) Restoration Results: As can be seen from Fig. 3,
the results of the original model and our model restoration
are generally similar, with most of the test data showing
better details under our model and some data recovered more
completely on the original model. The specific data in Table
II also confirms such a view.

As can be seen from Table II, our model outperforms the
original model in the Chinese ancient painting dataset with
more data, while it performs poorly in the SNGFaces dataset
relative to the original model. We analyze the main reasons in
the main characteristics.

d) More Experiments: To evaluate the effectiveness of
the reconstruction based on transformer in this task, we
compare it with MST [31]. The result is presented in Fig. 4
and Table III, where the structure information repaired through
transformer-based outperforms the CNN-based approach for
the auxiliary effect on the reconstruction. A similar ablation
experiment was conducted in [12], and while our result aligns
with theirs, the validation on a different dataset enhances the
generalization of this conclusion.



Fig. 3. Some of the results. The four sets of images are some examples of test
results for each dataset, from left to right, Masked Images, Original Images,
Predicted Image with Canny, and Predicted Images with CATS. Predicted
Image with Canny means Predicted Image with CATS indicates our model
using CATS model.

Fig. 4. An example comparing the results of MST and our model, the
differences in the reconstruction have been ticked off with boxes.

C. Main Features

The ZITS model exhibits a notable characteristic whereby
if the entities in an image are fully covered, the resulting
inpainted image will fail to restore those entities, as demon-
strated in Fig. 5.

One critical factor is the inability of the first stage in the

Fig. 5. As the left eye portion of the original image is obscured, our model
cannot accurately restore this region. The image is 1024× 1024 in size.

ZITS model to acquire structur information from the obscured
regions. In essence, this is akin to extracting a portion of an
image and attempting to replace it with generated pixels, a
complex task that necessitates more advanced algorithms and
larger datasets.

As previously mentioned, our model’s overall performance
is slightly superior to the original ZITS model in testing, and
the effect may be slightly inferior in the test of some data. We
attribute this to two primary factors: computing power and
data set limitations, insufficient number of training iterations,
even fine-tuning based on the pre-trained model requires more
training; compared with the original model, our optimization
mainly focuses on the process of structure restoration, while
the image structure of ancient paintings is very diverse, most
of which have unusual features, which increases the difficulty
of our task.

In conclusion, the results of the restoration need to be
interpreted while considering the differences in the datasets.
Our analysis indicates that the differences in the SNGFaces
dataset and the Chinese ancient painting dataset, such as
the small amount of data, lack of fixed features between
pictures, and larger image size, can make it challenging for
the improved model components to learn effective features.
However, the pre-trained parameters of the original model
match its components, enabling it to achieve relatively efficient
performance with only a small amount of data and diverse
features.

V. CONCLUSION

In this paper, we propose a model combining CATS and
ZITS techniques for a practical antique painting restoration
task. Our proposed model employs the CATS model to detect
edge structure information, replacing the Canny algorithm
in the original model. We tested it on the oil painting
dataset SNGFaces and the Chinese ancient painting dataset
and yielded valid conclusions, which are presented below.

Compared to the original model, our proposed model out-
performs on larger data sets, showcasing the effectiveness of
replacing the simple Canny algorithm. However, it should be
noted that our model also requires increased training volume
and computing power. Furthermore, in our experiments, we
observed some performance fluctuations as the number of
fine-tuning steps increased, although the final performance
ultimately surpassed that of the original model without bot-
tleneck issues. While our model has demonstrated significant
improvements, it is important to acknowledge its limitations
regarding the original model design and computational require-
ments. Therefore, we recommend researchers with appropriate
specialized needs to use different models depending on the
data.

We obtained the performance improvement by improving
only a part of ZITS and fine-tuning it with specialized data.
We believe the work is valuable for the conservation and
presentation of digital cultural heritage such as VR murals,
VR artifact surface textures, and VR museums. We hope this
perspective will inspire future work.
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